Inversion of gravity data for base salt

نویسندگان

  • Dongjie Cheng
  • Yaoguo Li
  • Ken Larner
چکیده

We develop an algorithm for inverting gravity data to construct estimates of the base of salt and investigate the sensitivity of the recovered model to four different sources of errors. The inversion algorithm is based on the approach of Tikhonov regularization.The prior information is typically shape and depth of the top salt and of a known part of base salt from seismic image. The error in such prior information governs the reliability of the recovered base of salt. It is therefore important to understand the influencing factors of the inversion: (1) input gravity data, (2) top of salt, (3) known part of the base salt, and (4) the background density profile. We use a synthetic model to illustrate the algorithm and find that the recovered model can be a good representation of the true model in the absence of errors. Moderate perturbation in any of these four factors could lead to large errors in the recovered model, leaving open the question as when gravity data can aid in improving the image of base salt.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse modeling of gravity field data due to finite vertical cylinder using modular neural network and least-squares standard deviation method

In this paper, modular neural network (MNN) inversion has been applied for the parameters approximation of the gravity anomaly causative target. The trained neural network is used for estimating the amplitude coefficient and depths to the top and bottom of a finite vertical cylinder source. The results of the applied neural network method are compared with the results of the least-squares stand...

متن کامل

Automatic estimation of regularization parameter by active constraint balancing method for 3D inversion of gravity data

Gravity data inversion is one of the important steps in the interpretation of practical gravity data. The inversion result can be obtained by minimization of the Tikhonov objective function. The determination of an optimal regularization parameter is highly important in the gravity data inversion. In this work, an attempt was made to use the active constrain balancing (ACB) method to select the...

متن کامل

3D gravity data-space inversion with sparseness and bound constraints

One of the most remarkable basis of the gravity data inversion is the recognition of sharp boundaries between an ore body and its host rocks during the interpretation step. Therefore, in this work, it is attempted to develop an inversion approach to determine a 3D density distribution that produces a given gravity anomaly. The subsurface model consists of a 3D rectangular prisms of known sizes ...

متن کامل

Non-linear stochastic inversion of 2D gravity data using evolution strategy (ES)

In the current work, a 2D non-linear inverse problem of gravity data is solved using the evolution strategies (ES) to find the thickness of a sedimentary layer in a deep-water situation where a thick sedimentary layer usually exists. Such problems are widely encountered in the early stages of petroleum explorations where potential field data are used to find an initial estimate of the basin geo...

متن کامل

Inversion of Gravity Data by Constrained Nonlinear Optimization based on nonlinear Programming Techniques for Mapping Bedrock Topography

A constrained nonlinear optimization method based on nonlinear programming techniques has been applied to map geometry of bedrock of sedimentary basins by inversion of gravity anomaly data. In the inversion, the applying model is a 2-D model that is composed of a set of juxtaposed prisms whose lower depths have been considered as unknown model parameters. The applied inversion method is a nonli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003